Çankaya University
Department of Computer Engineering
CENG 277 - Discrete Structures

Name-Surname:
16.10 .2014

## ID Number:

## CLASSWORK 2

Show that $2^{n}<\binom{2 n}{n}$ for all $2 \leqslant n$.

## Answer:

Let's use mathematical induction. The formula is correct for $n=2$, because $2^{2}<6$. Suppose it is correct for $n=k$.

$$
2^{k}<\frac{(2 k)!}{k!k!}
$$

We know that

$$
2<\frac{2 k+2}{k+1} \frac{2 k+1}{k+1}
$$

Multiply these inequalities side by side to obtain:

$$
2^{k+1}<\frac{(2 k+2)!}{(k+1)!(k+1)!}=\binom{2(k+1)}{k+1}
$$

So the formula is correct for all $n$.

Çankaya University
Department of Computer Engineering
CENG 277 - Discrete Structures

Name-Surname:
16.10.2014

## ID Number:

## CLASSWORK 2

Show that $\binom{2 n}{n}<4^{n}$ for all $2 \leqslant n$.

## Answer:

Let's use mathematical induction. The formula is correct for $n=2$, because $6<4^{2}$. Suppose it is correct for $n=k$.

$$
\frac{(2 k)!}{k!k!}<4^{k}
$$

We know that

$$
\frac{2 k+2}{k+1} \frac{2 k+1}{k+1}<4
$$

Multiply these inequalities side by side to obtain:

$$
\begin{aligned}
& \frac{(2 k+2)!}{(k+1)!(k+1)!}<4^{k+1} \\
& \binom{2(k+1)}{k+1}<4^{k+1}
\end{aligned}
$$

So the formula is correct for all $n$.

