

Çankaya University Department of Computer Engineering

CENG 277 - Discrete Structures

Name-Surname: ID Number:

CLASSWORK 4

Define a relation R on \mathbb{Z} such that $(m, n) \in R$ if m + n is even. Is this relation

- a) Reflexive?
- **b)** Symmetric?
- c) Antisymmetric?
- d) Transitive?

Answer:

- a) YES. m + m is always even.
- **b)** YES. If m + n is even, then n + m is even.
- c) NO. For example $(1,3) \in R$ and $(3,1) \in R$.

d) YES. Suppose $(k, m) \in R$ and $(m, n) \in R$. If k is odd, both m and n are odd, therefore $(m, n) \in R$. Similarly for k even.

06.11.2014

Çankaya University Department of Computer Engineering

CENG 277 - Discrete Structures

Name-Surname: ID Number:

CLASSWORK 4

Let $A = \{1, 2, 3, \dots, 40\}$ and $B = \{1, 2, 3, \dots, 80\}$.

a) How many functions are there from A to B?

b) How many one-to-one functions are there from A to B?

c) How many one-to-one functions are there from A to B satisfying the condition that odd numbers are mapped to odd numbers and even numbers are mapped to even numbers?

Answer:

a) 80⁴⁰

06.11.2014