ID Number:

CLASSWORK 7

We will distribute 29 balls to 3 kids $\mathrm{A}, \mathrm{B}, \mathrm{C}$ such that

- A gets at least 8 balls,
- B gets at least 1 ball,
- C gets at most 10 balls.

In how many different ways can we distribute balls?

Answer:

Represent the number of balls $\mathrm{A}, \mathrm{B}, \mathrm{C}$ gets by the power of x in the following expansions:

$$
\begin{aligned}
& \left(x^{8}+x^{9}+\cdots\right)\left(x+x^{2}+\cdots\right)\left(1+x+\cdots+x^{10}\right) \\
& =\frac{x^{8}}{1-x} \frac{x}{1-x} \frac{1-x^{11}}{1-x} \\
& =\frac{x^{9}-x^{20}}{(1-x)^{3}} \\
& =\left(x^{9}-x^{20}\right) \sum_{n=0}^{\infty}\binom{n+2}{n} x^{n}
\end{aligned}
$$

The coefficient of x^{29} is:

$$
\binom{22}{20}-\binom{11}{9}=176
$$

ID Number:

CLASSWORK 7

We will distribute 39 balls to 4 kids A, B, C, D such that

- A gets at most 5 balls,
- B gets at least 1 ball,
- C gets 7 or 8 balls,
- D gets even number of balls.

In how many different ways can we distribute balls?

Answer:

Represent the number of balls $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ gets by the power of x in the following expansions:

$$
\begin{aligned}
& \left(1+x+\cdots+x^{5}\right)\left(x+x^{2}+\cdots\right)\left(x^{7}+x^{8}\right)\left(1+x^{2}+x^{4}+\cdots\right) \\
& =\frac{1-x^{6}}{1-x} \frac{x}{1-x} x^{7}(1+x) \frac{1}{1-x^{2}} \\
& =\frac{\left(x^{8}-x^{14}\right)(1+x)}{(1-x)^{3}(1+x)} \\
& =\frac{x^{8}-x^{14}}{(1-x)^{3}} \\
& =\left(x^{8}-x^{14}\right) \sum_{n=0}^{\infty}\binom{n+2}{n} x^{n}
\end{aligned}
$$

The coefficient of x^{39} is:

$$
\binom{33}{31}-\binom{27}{25}=177
$$

