Çankaya University
Department of Computer Engineering
2014-2015 Fall Semester

CENG 277 - Discrete Structures Final Examination

1) Show that if $x>-1$ and n is a positive integer,

$$
(1+x)^{n} \geqslant 1+n x
$$

2) There are 101 chairs arranged in a row. n people sit on these chairs. We are certain that, however they are arranged, there are always 5 or more empty consecutive chairs. What is n ?
3) Consider set of 5 letter strings made of the letters in the set $\{a, b, c, d, e, f, g\}$. Find the number of strings where at least one letter is repeated exactly twice. (For example, egbcb or cacee)
4) Find the asymptotic complexity of the MAIN program, given that the complexity of HELPER program is $\Theta(n)$. (You may assume n is a power of 2)
-MAIN-
INPUT: integer n
$i=1$
While $i \leqslant n$
For $j=1$ to i HELPER(j)
EndFor
$i=2 * i$
EndWhile
5) Let a_{n} denote the number of ways we can express the integer n as a sum of odd integers where order is important. For example, $a_{5}=5$ and $a_{6}=8$ because 5 can be written as:

$$
1+1+1+1+1=3+1+1=1+3+1=1+1+3=5
$$

and 6 can be written as:
$1+1+1+1+1+1=3+1+1+1=1+3+1+1=1+1+3+1=1+1+1+3=5+1=1+5=3+3$
a) Find a recursion relation for a_{n}.
b) Solve the recurrence relation.

Answers

1) Let $n=1$. Clearly, $1+x=1+x$, it is correct for base case.

Now assume the inequality is correct for $n=k$.

$$
\begin{aligned}
& (1+x)^{k} \geqslant 1+k x \\
& (1+x)=(1+x)
\end{aligned}
$$

Multiply them side by side to obtain

$$
(1+x)^{k+1} \geqslant 1+(k+1) x+k x^{2}
$$

$k x^{2}$ is positive therefore

$$
(1+x)^{k+1} \geqslant 1+(k+1) x
$$

So the claim is correct by Mathematical Induction.
2) Arrange the chairs in groups of 5 . There will be 20 groups and one extra. We want 5 empty slots in at least one group, so by pigeonhole principle, we need at least $4 \cdot 20+1+1=82$ empty slots. This means at most $101-82=19$ people.
3) We will first choose letters, then arrange them. The possibilities are:

$$
\begin{aligned}
& 2+1+1+1:\binom{7}{1}\binom{6}{3} \frac{5!}{2!}=8400 \\
& 2+2+1:\binom{7}{2}\binom{5}{1} \frac{5!}{2!2!}=3150 \\
& 2+3:\binom{7}{1}\binom{6}{1} \frac{5!}{2!3!}=420 \\
& 8400+3150+420=11970
\end{aligned}
$$

Second Method

Choose one letter, choose two slots, put it in two slots. Fill other slots randomly using the other 6 letters. This guarantees we have exactly two of at least one letter, but if we have two of two distinct letters, we are counting the word twice. So subtract them.

$$
7 \cdot\binom{5}{2} \cdot 6^{3}-3150=11970
$$

4) The number of operations is:

$$
\begin{aligned}
& 1+(1+2)+(1+2+3+4)+(1+2+\cdots+8)+\cdots+(1+2+\cdots+n) \\
& \frac{1 \cdot 2}{2}+\frac{2 \cdot 3}{2}+\frac{4 \cdot 5}{2}+\cdots+\frac{n(n+1)}{2}
\end{aligned}
$$

Assuming n is a power of 2 , we obtain

$$
\frac{2 n^{2}+3 n-2}{3}
$$

operations, so it is $\Theta\left(n^{2}\right)$.

Second Method

An easier way to see this is as follows: The For loop is $\Theta\left(i^{2}\right)$. Its maximum run is of n^{2} operations, then it decreases by a factor of 4 . So we have to add:

$$
\begin{aligned}
& n^{2}+\frac{n^{2}}{4}+\frac{n^{2}}{16}+\cdots \\
& =\frac{4}{3} n^{2}=\Theta\left(n^{2}\right)
\end{aligned}
$$

5) Consider all valid orders for a_{n}. Either they end with +1 or they end with $+k$ where $k \geqslant 3$. If it ends with +1 , remove that and obtain a_{n-1}. If it ends with $+k$, replace it by $k-2$ and obtain a_{n-2}. As there is no other possibility, we obtained:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

Using the initial conditions $a_{1}=1$ and $a_{2}=1$, we obtain the Fibonacci Sequence,

$$
a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

