

CENG 277 - Discrete Structures First Midterm Examination

- 1) Consider all permutations of the 29 letter Turkish alphabet $\{A, B, \ldots Z\}$. In how many of these does A come before K and K before Z? (Note that these letters need not be adjacent)
- 2) There are 80 different types of drinks at the supermarket. There is practically unlimited amount from each type. For your party, you want to buy
 - a) Exactly 20 bottles.
 - b) At most 20 bottles.In how many different ways can you do this?
- 3) Prove or disprove the following:
 - $\begin{array}{ll} \mathbf{a)} \ ((p \wedge \neg r) \vee \neg (q \wedge r)) \iff (\neg r) \\ \mathbf{b)} \ \mathrm{Let} \ x, y \in \mathbb{R}. \ \forall x \forall y ((0 < x \ \wedge \ x < y) \quad \Rightarrow \quad x^2 < y^2) \end{array}$
- 4) Let $n \in \mathbb{Z}^+$ The expression $2^n + 1$ is divisible by 3 for some values of n. For others, it is not.
 - a) Guess the correct formula where the expression is always divisible by 3.
 - b) Prove your guess.
- 5) In how many different ways can we express 63504 as $63504 = p \cdot q$ where p and q are positive integers and p < q?

1) Choose 3 slots: $\binom{29}{3} = \frac{29!}{3! \, 26!}$

Place A, B, Z. (In one way). Then, place other 26 letters randomly:

$$\frac{29!}{3!\,26!}\,\,26! = \frac{29!}{3!}$$

- 2) a) Distribute 20 balls to 80 containers randomly: $\binom{99}{20} = \frac{99!}{20! \, 79!}$
 - **b)** Using the same idea above for all choices from 0 to 20: $\sum_{n=0}^{20} \binom{79+n}{n}$ Second Method: Distribute 20 balls to 81 containers: (81st contains the ones that are not distributed) $\binom{100}{20}$
- a) Make a truth table. p = 0, q = 0, r = 1 shows that the claim is wrong.
 b) x, y are both positive, so we can multiply x < y and x < y side by side to obtain: x² < y²
- 4) a) The claim is: $3 \mid 2^{2n-1} + 1$, for n = 1, 2, ...
 - **b)** Proof:

 $n = 1 \implies 3 \mid 3$. It is correct for base case.

Assume the claim is correct for n = k, in other words: $2^{2k-1} + 1 = 3m$. Now consider n = k + 1

$$2^{2k+2-1} + 1 = 4 \cdot 2^{2k-1} + 1$$

= $3 \cdot 2^{2k-1} + 2^{2k-1} + 1$
= $3 \cdot 2^{2k-1} + 3m$
= $3p$

where p is an integer, so the claim is correct by Mathematical Induction.

5) $63504 = 2^4 3^4 7^2$

Therefore the total number of factors is: (4 + 1)(4 + 1)(2 + 1) = 75. One of them gives the square root: $252 \cdot 252 = 63504$ which can not be p or q. The other pairs give one p (smaller factor) and one q so there are

$$\frac{75-1}{2} = 37$$

pairs of p, q.